

SHORT COMMUNICATION

Induction of a High-Affinity Ketanserin Binding Site at the 5-Hydroxytryptamine_{1B} Receptor by Modification of Its Carboxy-Terminal Intracellular Portion

Thierry Wurch, Christiane Palmier and Petrus J. Pauwels*

Department of Cellular and Molecular Biology, Centre De Recherche Pierre Fabre,

81106 Castres, France

ABSTRACT. Two chimeric 5-hydroxytryptamine (5-HT) receptors were constructed by exchanging the C-terminal portion of the human (h) 5-HT $_{1B}$ receptor with the equivalent domain of the h 5-HT $_{2A}$ receptor (5-HT $_{1B/2A}$) or with this domain truncated from its last 44 amino acids (5-HT $_{1B/2A\Delta44}$). The equilibrium dissociation constant of the radioligand [3 H]GR 125743 was similar for both chimera compared to the wild-type (wt) h 5-HT $_{1B}$ receptor upon transient expression in COS-7 cells. Ketanserin binding affinity was 21-fold increased from pK $_i$: 5.79 (wt h 5-HT $_{1B}$ receptor) to pK $_i$: 7.11 at the 5-HT $_{1B/2A}$ chimeric receptor, this latter value being close to that of the wt h 5-HT $_{1D}$ receptor (pK $_i$: 7.62). This enhanced ketanserin binding affinity was lost when the last 44 C-terminal amino acids of the 5-HT $_{2A}$ receptor were deleted in the chimera 5-HT $_{1B/2A\Delta44}$ (pK $_i$: 5.80). The binding affinities of the 5-HT antagonists ritanserin, GR 125743, and SB-224289 were not modified at either chimeric 5-HT receptor. The agonists F 11356, 5-HT, zolmitriptan, and sumatriptan yielded slightly increased (2- to 6-fold) binding affinities at both chimera as compared to the wt h 5-HT $_{1B}$ receptor. The present data suggest a role for the C-terminal intracellular receptor domain in modifying ketanserin/5-HT $_{1B}$ receptor interactions. BIOCHEM PHARMACOL **59**;9:1117–1121, 2000. © 2000 Elsevier Science Inc.

KEY WORDS. ketanserin; chimeric receptor; ligand binding; recombinant 5-HT_{1B}; 5-HT_{2A} receptors

The serotonin (5-HT†) antagonist ketanserin was initially described as a selective 5-HT₂ receptor ligand. Amongst the 5-HT₂ receptor subtypes, it displays selectivity for the 5-HT_{2A} receptor (p K_i : 8.50; [1]) compared to its 60- and 200-fold lower binding affinity for the 5-HT_{2C} and 5-HT_{2B} receptors, respectively [1]. More recently, ketanserin has also been shown to display binding affinity for human (h) 5-HT_{1D} (p K_i : 7.40; [2]), rat 5-HT_{1D} (p K_i : 7.98 to 8.20; [3, 4]), rabbit 5-HT_{1D} (p K_i : 7.66; [3]), and guinea pig 5-HT_{1D} receptors (p K_i : 6.86 to 7.79; [3, 4]), silent antagonism at 5-HT_{1D} receptors of guinea pig and rat (p K_b : 7.51 to 7.92; [4]), and inverse agonism at h 5-HT_{1D} receptors (piC₅₀: 7.90; [5]). Otherwise, ketanserin binds poorly to the canine 5-HT_{1D} receptor [6] and does not recognize 5-HT_{1B} receptors of different species reported so far [7]. The construction of chimeric 5-HT_{1D}/5-HT_{1B} receptors allowed the delineation of a ketanserin binding site to the 5-HT_{1D} receptor: the exchange of a domain encompassing the second extracellular loop and the fifth TMD of the h 5-HT_{1D} receptor

In this study, we report on the binding affinities of chimeric h 5-HT_{1B} receptors for which the C-terminal intracellular portion was replaced by the equivalent domain of the h 5-HT_{2A} receptor or by this domain deleted of its last 44 amino acids. Both chimera were transiently expressed in COS-7 cells and analyzed for inhibition of the binding of [³H] GR 125743, a selective 5-HT_{1B/1D} receptor ligand, by a series of 5-HT ligands. Data were compared to the ligand binding profiles of the h 5-HT_{1D} receptor and of the parental h 5-HT_{1B} and h 5-HT_{2A} receptors. The 5-HT_{1B} receptor chimera carrying the 5-HT_{2A} receptor-derived C-terminal portion yielded an increased ketanserin binding affinity without significant modifications of the binding affinities for the other ligands being investigated.

MATERIALS AND METHODS Construction of Chimeric 5-HT_{1B/2A} Receptors

Chimeric receptors were constructed by exchanging the C-terminal intracellular portion of the h 5-HT_{1B} receptor

with an equivalent domain of the h 5-HT_{1B} receptor decreased the ketanserin binding affinity, and reciprocally [7]. This led us to postulate a ketanserin binding site at the second extracellular loop and/or near the exofacial surface of the fifth TMD of the h 5-HT_{1D} receptor [7].

^{*} Corresponding author: Dr. Peter Pauwels, Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17, av. Jean Moulin, 81106 Castres cédex, France. Tel. 0033-5.63.71.42.65; FAX 0033-5.63.71.43.63; E-mail: peter.pauwels@pierre-fabre.com

[†] Abbreviations: h, human; wt, wild-type; 5-HT, 5-hydroxytryptamine, serotonin; and TMD, transmembrane domain.

Received 22 June 1999; accepted 11 October 1999.

1118 T. Wurch et al.

(Asn³⁷³ to Ser³⁹⁰; RC: 2.1.5-HT.01B; GeneBank accession number: M89478) with the entire homologous domain of the h 5-HT_{2A} receptor (Asn³⁸⁴ to Val⁴⁷¹; RC: 2.1.5-HT.02A, GeneBank accession number: M86841; 5-HT_{1B/2}2A) or by a domain deleted from its last 44 amino acids (Asn³⁸⁴ to Gly⁴³⁷; 5-HT_{1B/2AΔ44}). They were amplified by a polymerase chain reaction-based modified overlap extension technique as described [8]. The chimeric receptors were cloned into the expression vector pCR3.1 and fully sequenced.

Expression of 5-HT Receptors and Radioligand Binding Experiments

COS-7 cells (5 \times 10⁶ cells) were transfected with 10 µg of either plasmid pcDNA₃/h 5-HT_{1B} [9], pCR3.1/5-HT_{1B/2A}. or pCR3.1/5-HT_{1B/2A Δ 44} by electroporation as previously described [9]. A human embryonic kidney 293 cell line stably expressing the h 5-HT_{2A} receptor was grown in complete Dulbecco's modified Eagle's medium and selected on 1.25 mg/mL geneticin as described [9]. Binding assays were performed with either 1.0 nM [³H] N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(4-pyridil)benzamide (GR 125743) for 5-HT_{1B} receptor binding or 1.0 nM [³H]ketanserin for 5-HT_{2A} receptor binding. Incubation mixtures consisted of 0.4 mL of cell membrane, 0.05 mL of radioligand, and 0.05 mL of compound for inhibition or 10 µM 5-HT to determine non-specific binding. The reactions were performed as described [9]. Data were analyzed graphically with inhibition curves and IC50 values were derived as the concentration of the compound producing 50% inhibition of specific radioligand binding. Inhibition constants K_i were calculated according to the equation $K_i = IC_{50}/(1 + C/K_d)$, with C the concentration and K_d the equilibrium dissociation constant of the radioligand. The K_d values were obtained from saturation binding experiments performed as described [9]. Membrane protein levels were estimated with a dye-binding assay using the BioRad protein assay kit and BSA as a standard [10].

Materials

The pCR3.1 vector was from Invitrogen. The COS-7 cell line was obtained from ATCC. [³H]GR 125743 (80 Ci/mmol) and [³H]ketanserin (66.4 Ci/mmol) were from Amersham and New England Nuclear, respectively. 5-HT, ketanserin, ritanserin, and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) were from RBI-Sigma. 4-[4-[2-(2-aminoethyl)-1H-indol-5-yloxyl]-acetyl]-piperazinyl-1-yl] benzonitrile (F 11356), zolmitriptan, sumatriptan, GR 125743, and 1'-methyl-5-(2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperidine] (SB-224289) were synthesized internally.

TABLE 1. K_d and B_{max} values for [3H]GR125743 or [3H]ketanserin binding to wild-type h 5-HT_{1B}, h 5-HT_{2A}, and chimeric 5-HT_{1B/2A} and 5-HT_{1B/2A} Δ_{44} receptors

	K_d (nM)	$B_{ m max}$ (pmol/mg protein)	
[³ H]GR 125743			
h 5-HT _{1B}	0.61 ± 0.09	8.1 ± 2.1	
5-HT _{1B/2A}	0.67 ± 0.06	26.3 ± 8.8	
$5 - HT_{1B/2A\Delta 44}$	0.53 ± 0.08	32.3 ± 9.8	
[³ H]ketanserin h 5-HT _{2A}	0.28-0.30	2.7–2.8	

The equilibrium dissociation constants (K_d) and the maximal binding capacity $(B_{\rm max})$ were determined for each of the wt and chimeric 5-HT receptors on cellular membranes as described in Methods. Results are expressed as mean values \pm SEM from 3 independent experiments or as the mean from 2 independent experiments, each one performed in duplicate.

RESULTS AND DISCUSSION

Saturation binding experiments were performed with [³H]GR 125743, a selective 5-HT_{1B/1D} ligand, to membrane preparations of COS-7 cells transiently expressing either the wt h 5-HT_{1B} or the chimeric 5-HT_{1B/2A} and 5-HT_{1B/2A Δ 44} receptors, and with [3H]ketanserin to membranes of human embryonic kidney 293 cells stably expressing the wt h 5-HT_{2A} receptor. The [³H]GR 125743 equilibrium dissociation constants of both chimera were similar to that of the wt h 5-HT_{1B} receptor (Table 1). The maximal binding capacity of the wt h 5-HT_{1B} receptor was 3- to 4-fold lower than that of the chimeric 5-HT_{1B/2A} and 5-HT_{1B/2A Δ 44} receptors and 3-fold higher than that of the wt h 5-HT_{2A} receptor (Table 1). A series of nine 5-HT ligands was tested for inhibition of [3H]GR 125743 binding to wt h 5-HT_{1B}, 5-HT_{1B/2A}, and 5-HT_{1B/2A Δ 44} receptors and compared to their binding affinities for the wt h 5-HT_{1D} and h 5-HT_{2A} receptors (Table 2). The chimeric 5-HT_{1B/2A} receptor yielded a 21-fold increased binding affinity for the 5-HT₂ antagonist ketanserin as compared to the wt h 5-HT_{1B} receptor. This binding affinity is close (3-fold lower) to what is observed for the wt h 5-HT $_{\rm 1D}$ receptor but 87-fold lower than for the wt h 5-HT_{2A} receptor (Table 2). The structurally related piperidine derivative ritanserin yielded an almost similar binding affinity as compared to the wt h 5-HT_{1B} receptor, this value being 3- and 47-fold lower than for the wt h 5-HT_{1D} and h 5-HT_{2A} receptors, respectively. This ketanserin binding feature was lost when the last 44 amino acids of the 5-HT_{2A} receptor-derived C-terminal portion were truncated in the chimeric 5-HT $_{1B/2A\Delta44}$ receptor. The binding affinities of the 5-HT antagonists GR 125743 and SB-224289 were not modified in either chimeric 5-HT receptor as compared to the parental h 5-HT_{1B} receptor. The binding affinities of the agonists F 11356, zolmitriptan, 5-HT, and sumatriptan were slightly increased (1.6- to 6-fold) at both chimeric receptors as compared to the wt h 5-HT_{1B} receptor. The 5-HT₂ agonist DOI (1-(2,5dimethoxy-4-iodophenyl)-2-aminopropane) was inactive at either the wt h 5-H T_{1B} , h 5-H T_{1D} , or chimeric 5-H T_{1B} receptor.

TABLE 2. pK_i values of 5-HT receptor ligands for inhibition of [3 H]GR 125743 or [3 H]ketanserin binding to wt h 5-HT_{1B}, h 5-HT_{1D}, h 5-HT_{2A}, and chimeric 5-HT_{1B/2A} and 5-HT_{1B/2A} receptors

Radioligand Receptor	[³H]GR 125743				[³ H]Ketanserin
	wt h 5-HT _{1B}	5-HT _{1B/2A}	5-HT _{1B/2Aδ44}	wt h 5-HT _{1D} *	wt h 5-HT _{2A}
Agonists					
F 11356	8.73 ± 0.08	9.29 ± 0.12	9.09 ± 0.06	8.51 ± 0.05	6.88 ± 0.02
Zolmitriptan	7.66 ± 0.07	7.99 ± 0.13	7.94 ± 0.15	9.09 ± 0.02	<5
5-HT	7.47 ± 0.07	8.22 ± 0.17	7.86 ± 0.09	8.25 ± 0.05	7.41 ± 0.03
Sumatriptan	7.16 ± 0.04	7.37 ± 0.04	7.62 ± 0.09	8.22 ± 0.17	<5
DOI	<5	<5	<5	<5	8.24 ± 0.05
Antagonists					
GR 125743	8.85 ± 0.06	8.77 ± 0.05	8.88 ± 0.06	8.31 ± 0.14	6.74 ± 0.17
SB 224289	8.24 ± 0.05	7.93 ± 0.01	7.99 ± 0.11	6.63 ± 0.17	6.26 ± 0.06
Ritanserin	6.94 ± 0.05	7.28 ± 0.10	6.98 ± 0.08	7.77 ± 0.09	8.97 ± 0.11
Ketanserin	5.79 ± 0.09	7.11 ± 0.05	5.80 ± 0.13	7.62 ± 0.09	9.05 ± 0.05

Radioligand binding was performed with 1.0 nM [3 H]GR 125743 or 1.0 nM [3 H]ketanserin as described in Methods. Results (pK_i) are expressed as mean values \pm SEM from 3 to 10 independent experiments, each one performed in duplicate. DOI, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane.

Our data demonstrate the selective increase in ketanserin binding affinity at the h 5-HT_{1B} receptor when its C-terminal intracellular portion is exchanged with the equivalent domain of the h 5-HT_{2A} receptor. Remarkably, this binding affinity is close to the ketanserin value for the wt h 5-HT_{1D} receptor. Whereas we postulated that the second extracellular loop and the fifth TMD may be involved in the high-affinity ketanserin binding for the wt h 5-HT_{1D} receptor [7], this is unlikely to be the case for the chimeric 5- $HT_{1B/2A}$ receptor. The C-terminal intracellular portion beside TMD VI and VII of the wt h 5-HT_{1D} receptor does not seem to be important for ketanserin binding to this receptor [7]. The present study suggests an alternative hypothesis for the observed high-affinity site for ketanserin by which the structure of the chimeric 5-HT_{1B/2A} receptor might be affected by the exchange of the C-terminal intracellular portion. The binding affinities of ritanserin, a structurally related piperidine derivative of ketanserin, as well as the other investigated 5-HT antagonists, were not affected. Slightly improved binding affinities were observed with the 5-HT agonists. The h 5-HT_{1B} and h 5-HT_{2A} receptors share a low (44%) overall homology at the amino acid level. Hence, it is unlikely that the ketanserin/5-HT_{1B/2A} receptor contact points are similar to the ketanserin binding sites at the h 5-HT_{2A} receptor. TMD prediction does not envisage the existence of an additional TMD located in the C-terminal portion or a modification of the membrane junctions of the seven classical TMD (Fig. 1). An eighth hydrophobic domain has been postulated at the N-terminal extracellular portion of the 5-HT_{2C} receptor [11], but this feature is absent in both 5-HT_{1B} and 5-HT_{2A} receptors [11]. Interestingly, a basic BBXXB motif (where B is a basic amino acid and X a non-basic residue) is located in the C-terminal portion of the h 5-HT_{2A} receptor (Lys⁴²⁹-Lys-Glu-Asn-Lys) and is removed by the 44-amino-acid deletion in the chimera 5-HT $_{1B/2A\Delta44}$. Similar domains are also present at the distal end of the third intracellular loop (Lys³¹⁰-Lys-Ala-Thr-Lys)

and in the C-terminal portion close to TMD VII (His³⁸¹-Lys-Leu-Ile-Arg) of the h 5-HT_{1B} receptor and may be involved in G protein interactions [12]. The presence of a BBXXB motif in the 5-HT_{2A} receptor C-terminal intracellular portion, distal to TMD VII as compared to the wt h 5-HT_{1B} receptor, may modify the chimeric 5-HT_{1B/2A} receptor:G protein interactions as compared to the wt h 5-HT_{1B} receptor and alter the chimera's ligand binding pocket to facilitate the binding of ketanserin. Several molecular models of ketanserin/5-HT_{2A} receptor interactions have been proposed, but none envisage a direct interaction of ketanserin with either the C-terminal intracellular portion or any of the extramembrane domains [13, 14]. Most probably, the 5-HT_{2A} receptor-derived fulllength C-terminal portion may interact either directly with the 5-HT_{1B} receptor's intracellular domains or indirectly via a G protein, thereby modifying the positioning of the h 5-HT_{1B} TMD and favoring the binding of ketanserin. The shortening of the 5-HT_{2A} receptor-derived C-terminal portion in the chimera 5-HT $_{1B/2A\Delta44}$ may release structural TMD constraints generated by the last 44 5-HT_{2A} receptor C-terminal amino acids. This domain is particularly charged (8 basic and 8 acidic amino acid residues) and hydrophilic (Fig. 1, B and C); it may generate ionic bonds with the intracellular domains of the h 5-HT_{1B} receptor.

In conclusion, we report here on the modulation of ketanserin binding affinity at the h 5-HT_{1B} receptor by exchanging its C-terminal intracellular portion with that of the h 5-HT_{2A} receptor. These data suggest the possible importance of extramembrane domains in ligand binding for the 5-HT_{1B} receptor. This concept may advance the development of tridimensional models of G protein-coupled receptors.

We sincerely thank Fabrice Lestienne and Fréderic Finana for technical expertise and Stéphanie Cecco for secretarial assistance.

^{*}Values were taken from Wurch et al. [7] except for F 11356.

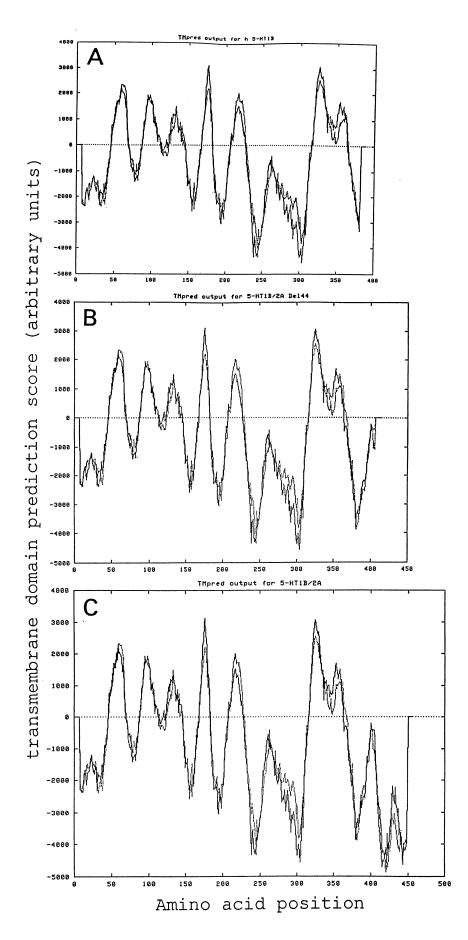


FIG. 1. Transmembrane domain prediction for wt h 5-HT $_{1B}$ (A), chimeric 5-HT $_{1B/2A}$ (B), and 5-HT $_{1B/2A}$ (C) receptors. The calculation algorithm is based on the statistical analysis of the transmembrane protein database TMbase as developed by Hofmann and Stoffel [15], and the resulting scores are plotted on the vertical axis. Positive scores above 500 are considered as significant for TMD prediction (TMpred).

References

- Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, Chan HW and Eglen RM, The pharmacology and distribution of human 5-hydroxytryptamine_{2B} (5-HT_{2B}) receptor gene products: Comparison with 5-HT_{2A} and 5-HT_{2C} receptors. Br J Pharmacol 115: 622–628, 1995.
- Pauwels PJ, Reihsaus E, Palmier C, Journot L, Lyons J and Colpaert FC, Ketanserin differentiates between cloned human 5-HT_{1Dα} receptors and cloned human 5-HT_{1Dβ}, sheep and bovine caudate nucleus 5-HT_{1D} receptor sites. Cell Pharmacol 2: 183–191, 1995.
- Zgombick JM, Bard JA, Kucharewicz SA, Urquhart DA, Weinshank RL and Branchek TA, Molecular cloning and pharmacological characterization of guinea pig 5-HT_{1B} and 5-HT_{1D} receptors. Neuropharmacology 36: 513–524, 1997.
- Wurch T, Palmier C, Colpaert FC and Pauwels PJ, Sequence and functional analysis of cloned guinea pig and rat serotonin 5-HT_{1D} receptors: Common pharmacological features within the 5-HT_{1D} receptor subfamily. J Neurochem 68: 410–418, 1997.
- Pauwels PJ, Tardif S, Palmier C, Wurch T and Colpaert FC, How efficacious are 5-HT_{1B/D} receptor ligands: An answer from GTPγS binding studies with stably transfected C6-glial cell lines. Neuropharmacology 36: 499–512, 1997.
- Zgombick JM, Weinshank RL, Macchi M, Schechter LE, Branchek TA and Hartig PR, Expression and pharmacological characterization of a canine 5-hydroxytryptamine_{1D} receptor subtype. Mol Pharmacol 40: 1036–1042, 1991.
- Wurch T, Colpaert FC and Pauwels PJ, Chimeric receptor analysis of the ketanserin binding site in the human 5-hydroxytryptamine_{1D} receptor: Importance of the second

- extracellular loop and fifth transmembrane domain in antagonist binding. Mol Pharmacol 54: 1088–1096, 1998.
- 8. Wurch T, Lestienne F and Pauwels PJ, A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes. *Biotechnol Techniques* 12: 653–657, 1998.
- Pauwels PJ, Palmier C, Wurch T and Colpaert FC, Pharmacology of cloned human 5-HT_{1D} receptor-mediated functional responses in stably transfected rat C6-glial cell lines: Further evidence differentiating human 5-HT_{1D}, and 5-HT_{1B} receptors. Naunyn Schmiedebergs Arch Pharmacol 353: 144–156, 1996.
- Bradford MM, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* 72: 248–254, 1976.
- Hurley JH, Bloem LJ, Pavalko F, Liu J, Tian M, Simon JR and Yu L, Structure–function studies of the eighth hydrophobic domain of a serotonin receptor. J Neurochem 72: 413–421, 1999.
- Okamoto T and Nishimoto I, Detection of G proteinactivator regions in M4 subtype muscarinic, cholinergic, and α₂-adrenergic receptors based upon characteristics in primary structure. J Biol Chem 267: 8342–8346, 1992.
- Westkaemper RB and Glennon RA, Molecular graphics models of members of the 5-HT₂ subfamily: 5-HT_{2A}, 5-HT_{2B}, and 5-HT_{2C} receptors. Med Chem Res 3: 317–334, 1993.
- Kristiansen K and Dahl SG, Molecular modeling of serotonin, ketanserin, ritanserin and their 5-HT_{2C} receptor interactions. Eur J Pharmacol 306: 195–210, 1996.
- Hofmann K and Stoffel W, TMbase—A database of membrane-spanning protein segments. J Biol Chem 374: 166–, 1993.